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Abstract

Let G be a hamiltonian graph G of order n and maximum degree
A, and let C(G) denote the set of cycle lengths occurring in G. It
is easy to see that |C(G)| > A — 1. In this paper, we prove that if
A > 7, then |C(G)| > ’”TA_?’. We also show that for every A > 2
there is a graph G of order n > 2A such that |C(G)| = A —1, and the
lower bound in case A > 7 is best possible.
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1 Introduction

We consider only finite, undirected and simple graphs and we use Bondy and
Murty’s book [1] for terminology. In particular, for a graph G, we denote by
V =V/(G) its vertex set and by E = E(G) its set of edges. By C, we mean
a p-cycle of G, i.e. a cycle of length p. The vertices of a graph G of order n
will be denoted by integers 1,2,...,n. The edges of a complementary graph



of a graph G are referred to as red edges. We denote by C(G) the set of
integers p, 3 < p < n, such that G contains a cycle of length p.

The description of the set S(n,A) of cycle lengths occurring in every
hamiltonian graph of order n and maximum degree A is given in [3] and
[4]. Clearly, S(n, = (C(G), where the intersection is taken over all
hamiltonian graphs of order n and maximum degree A. In particular, it is
shown in [4] that a hamiltonian graph of order n and A > % contains a cycle
C, for every integer p belonging to the union

nn—1-A _ A
U +2,—+2).

This result was shown ([4]) to be best possible.
There are several results (see [2]-[7]) on the set of cycle lengths in a
hamiltonian graph with given degree sum of two vertices.

The purpose of the present paper is the study of the number |C(G)| of
cycles lengths rather than the structure of C(G). We give a lower bound
of this number in dependence of the maximum degree A and the order of
the graph. In particular we shall observe a ”jump” of this bound in the
neighborhood of the value A = %. More precisely we shall prove the following
theorem.

Theorem 1 Let G be a hamiltonian graph of order n and mazrimum degree
A. If A < %, then |C(G)| > A — 1. Moreover, for every A > 2 there exist a
graph G for whzch this bound 1is attained.

If A> 2, then |C(G)| > 24 5 — 3. This bound is best possible.

The rest of the paper is organized as follows. The easy case of small
values of A is considered below. Section 2 contains some lemmas. The last
section is devoted to the second inequality of Theorem 1.

We shall use the following notation. The symbol G stands for a hamil-
tonian graph of order n with vertex set [1,n] = {1,2,3,...,n — 1,n} and
edge set E. By C' = (1,2,3,...,n—1,n,1) we denote a hamiltonian cycle of
G. The degree of the vertex 1 is A, the maximum degree of G. The set of
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neighbors of 1 will be denoted by X. Note that with this notation, if p € X
and 2 < p < n, then p € C(Q).

It is easily checked that for a hamiltonian graph G of maximum degree
A <n/2,|C(G)| > A —1. This is, in a sense, best possible in view of the
construction below.

Let £ > 4 and ¢ > 0 be two integers. Define G as follows. The order of
G equals (¢ +2)(k —2) + 2 and the edge-set of G consists of the hamiltonian
cycle 1,2,3,...,n—1,n,1 and of the edges joining 1 with every vertex of the
form k + z(k — 2), where 0 < z < ¢. It is easy to see that G has maximum
degree A = q + 3 and that the cycles of G may have only ¢ + 1 lengths of
the form k + z(k —2), 0 < z < ¢ and, of course, one cycle of length n. Thus
C(Q)=q+2=A-1.

2 Some lemmas

For given A C V we denote by f(A) the number of neighbors of 1 in A i.e.

fA) =X NAL
We start with some simple observations.
Proposition 2 If k ¢ C(G), thenk ¢ X andn —k+2 ¢ X. |
Proposition 3 Ifk ¢ C(G) anda € X and a+k—2 < n, thena+k—2 ¢ X.

Corollary 4 Let A and B be two disjoint subsets of [1,n] with B = A+ (k—
2). If k ¢ C(QG) then

F(AUB) = f(A4) + f(B) < |A] = J(14] + |B)).

Proof. The proof follows from the observation that if x € A N X then, by
Proposition 3, the vertex x + (k — 2) belonging to B is not in X . |

In particular, we shall use the last corollary when A and B are two con-
secutive segments (i.e. their union is also a segment) containing each k — 2
elements. However, in this case we shall need a more general result.

3



Lemma 5 Let By, By, ..., By be 2t disjoint, consecutive segments of [1,n],
each of length k — 2. If k ¢ C(G), then

2t 1 2t
f(UBi) < 3 > IBil.
i=1 i=1
Proof. Since the number of segments B; is 2¢, we can divide the segments
into ¢ pairs (B, Bs), (Bs, By),- .., (Ba_1, Ba;) and apply Corollary 4 to each
pair separately. By adding the obtained inequalities we get the conclusion.
|

Since, for ¢ > 1, B; and By are not consecutive, the value of f(B; U
By;) may be greater than |B;|. However, in this case we have the following
estimation.

Lemma 6 With the same notation as in the previous lemma suppose that
k ¢ C(G). Then
f(B1U By) < [Bi| +¢&,

where £ is defined by

2t—1 1 2t—1

f(__UQBz'):§;|Bi|—§-

Proof. The assertion of the lemma follows from Corollary 4 in the case t = 1.
Therefore, suppose ¢t > 1. Applying the previous lemma to the sequence of
segments By, ..., By _1 we deduce that £ > 0. It suffices now to repeat the
previous step to the sequence By, ..., Boy. [ |

The key lemma is the following:

Lemma 7 If |C(G)| < § + % — 3, then there exists an integer p, p < 32,
such that
p¢ C(G) andn—p+2 ¢ C(G).

Proof. Let C(G)° = [3,n] \ C(G). We note that if 232 € C(G)®, then
242 s the desired integer p. Assume that 22 ¢ C(G)". If k € C(G)¢, then
Proposition 2 states that £ ¢ X and n—k+2 ¢ X. Now if there exist distinct
k,l € C(G)° such that {k,n—k+2} intersects {l,n—1+2}, thenl = n—k+2 €
C(G)¢, and k is the desired integer p. So, we suppose the sets {k,n — k + 2}
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Figure 1:

with k& € C(G)° are pairwise disjoint. By Proposition 2, this implies that the
number of red edges incident with vertex 1 is at least 2|C(G)¢|. The degree
of vertex 1 is then at most n — 1 —2|C(G)* | <n—-1—(n—A—-1)=A, a
contradiction. [ |

3 Large values of A

Suppose, contrary to our claim, that there is a graph G of order n and A >
such that |C(G)| < 2+ 5 — 2. Let p, 3 < p < ™2 be an integer satisfying
the following property:

p¢ C(G)and n —p+2 ¢ C(QG). (%)

The existence of p is guaranteed by Lemma 7. If p < "T” we have n — 2(p —
2) — 3 > 0 vertices between p and n—p+2 on C. Let ¢t and r be the quotient
and the remainder when n — 2p + 1 is divided by 2(p — 2), i.e.

n—2p+1=2t(p—2)+r (%)

with 0 <7 < 2(p —2). pr:”T“weputt:rzo.

Let r1, 79 be two integers such that r{ +7r, =7r,0<r;, <ry <r;+1. For
r1 > 1 we define two segments on C

Rl = [p+ 1ap+T1]’
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R2:[n—p—7“2+2,n—p+1].

In other words R; is the segment having r; vertices with first vertex p+1
and Ry is the segment having ry vertices with last vertex n —p + 1. For
r1 = 0 or ro = 0 the corresponding set R; is, by definition, empty.

Denote by B the segment [p+r;+1,n —p—ry+1]. By the construction,
the segment B consists of an even number of segments, each of lengths (p—2).

Weput Vi ={i—(p—2):i € Ry} and Vo ={i+(p—2):i € Ry}. Hence
Vi =1[3,r1 4+ 2] and V, = [n — ry,n — 1]. Of course, if R; is empty, then the
set V; is empty too.

Finally denote by U, U, the remaining parts of the segments [3, p] and
[n — p + 2,n — 1], respectively. In other words U; = [r; + 3,p] and Us =
[n—p+2,n—ry—1]. Observe that the segments U; UR; and Uy U R, are both
of length p — 2 (see Figure 1). By Lemma 5 we know that f(B) < (1/2)|B]|.

Let us put

f(B)=(1/2)|B] - ¢ (1)
Applying Lemma 6 to the sequence of segments U; U Ry, B, Ry U Uy and
using (1) we get

f(U1UR1)+f(R2UU2)§p—2+§ (2)

Applying Corollary 4 to the sets Vi and Ry, as well as to the sets V5, and
Ry, we get

fV) + f(Ry) < [Ri| =y, (3)
f(V2) + f(Ry) < [Re| =1y (4)

Consider the set V; UU; UUs U V. Suppose that there exists x € [3,p — 1]
with x € X. Then (n — p+ ) ¢ X, for otherwise we would have a cycle of
length n —p+2 defined by 1,z, 2+ 1,...,n—p+x, 1, which contradicts the
property (x). By symmetry, we therefore obtain

fO) + f(U) + f(Uz2) + f(V2) <p—3. (5)

Let us put A =V, UU; U Ry U Ry U U, UV,. Observe that |A] = 2(p —
2) + r1 + ro. Moreover, n = 3 + |A| + |B|. Adding the inequalities (2), (3),
(4) and (5) we get



2f(A)§p—2+§+7‘1+7°2+p—3.

Hence
2f(A) <Al +€-1.
Thus A €1
f(A) < 5 + 5 5

Using the last inequality, (1) and the fact that the edges (1,2) and (1, n)
are in £ we get

A+ [B[+3 _n

Al ¢ 1 |B|
2 2 2’

A=2+f(A)+f(B)§2+7+§—§+——§§

a contradiction.

Finally, for given n define a graph G of order n and maximum degree A
as follows: the edge-set of G consists of the hamiltonian cycle 1,2,3,...,n—
1,n,1 and of the edges joining 1 with every vertex x where ”’TA% <z <
nt2l ifn — A is odd and 22 < g < A2 if p — Ais even.

It is easy to see that G has indeed maximum degree A and that G have

no cycle of length greater than “+£=1 if n — A is odd and "2 if n — A is

even (except for the cycle of length n). Thus |C(G)| = 25=2 if n— A is odd

and |C(G)| = ®£=2 if n — A is even. This finishes the proof of the theorem.
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